nerfstudio用マシン

教育における情報工学の研究に携わるお客様より、NeRF用のフレームワーク「nerfstudio」を利用するためのワークステーションをご相談いただきました。ご予算60万円での提案をご希望です。

搭載するGPUはnerfstudio公式サイトのCurrently supported CUDA architectures in the docker imageの表に記載があるモデルがご希望で、全体的な条件は以下の通りです。

・CPU:Core i9-13900K
・メモリ:64GB
・ストレージ:2TB SSD M.2
・ネットワーク:2.5GbE x1
・GPU:GeForce RTX3080またはGeForce RTX4070Ti、公式サイトの表に記載があるモデル
・電源:100V環境に対応
・OS:Ubuntu 22.04
・使用するソフトウェア:Conda, Python 3.11, nerfstudio
・予算:約60万円

ご連絡いただいた条件を踏まえて、お客様指定のパーツを搭載した構成をご提案しました。

CPU Intel Core i7-13900K (3.00GHz 8コア+2.20GHz 16コア)
メモリ 64GB
ストレージ 2TB SSD M.2
ビデオ NVIDIA GeForce RTX4070Ti 16GB
ネットワーク on board (2.5GbE x1) Wi-Fi x1
筐体+電源 ミドルタワー型筐体 + 850W
OS Ubuntu 22.04

2023年10月時点で最新の第13世代Intel CoreシリーズであるIntel Core i9-13900Kを搭載した構成です。このCPUはシリーズ内で最多の24のコアを搭載したハイエンドモデルです。

ビデオカードは、お客様が候補として想定されたGeforce RTX4070Tiを選択しています。価格的にも、本製品がご予算内で選択可能な製品のなかでは最上位クラスです。
※Geforce RTX4070Tiはnerfstudio公式サイトの表にも記載があるモデルです。

また、本構成は100V環境での運用に対応しています。

本事例の構成は、お客様から頂戴した条件を元に検討した内容です。
いただいた条件に合わせて柔軟にマシンをご提案いたしますので、掲載内容とは異なる条件でご検討の場合でも、お気軽にご相談ください。

■キーワード

・nerfstudioとは
nerfstudioはNeRFを扱うためのユーザーフレンドリーなフレームワーク。2022年10月、カリフォルニア大学バークレー校 バークレーAI研究所のカナザワAI研究室の学生によってオープンソースプロジェクトとして立ち上げられ、現在は同校の学生およびコミュニティ開発者によって開発されている。各コンポーネントをモジュラー化することで、より簡単にNeRFの作成・学習・テストが可能。

参考:nerfstudio ※外部サイトに飛びます

・NeRFとは
NeRFは物体の3D形状と表面の放射輝度を深層学習で推定する手法。形状を点群ではなく連続的な3次元空間内の放射輝度場として表現し、画像からニューラルネットワークを使って推定する。推定した放射輝度場から任意の視点や照明で高画質な画像を生成することができる。従来手法と比べてフォトリアルな画像生成が可能で、3D形状が連続的に表現されるため、VR/ARでの利用に適している。

・Pythonとは
Pythonは、Python Software Foundation (PSF) が著作権を保持する、オブジェクト指向プログラミング言語。プログラミングの構文がシンプルなため可読性が高く、目的に応じたライブラリやフレームワークといったコンポーネントが豊富に揃っていることも特徴。プログラミングの初学者から上級者に至るまで人気の言語。

参考:Python ※外部サイトに飛びます

参考:【特集記事】プログラミング言語 Python その人気の理由は?- Python プログラミングを加速するツールたち ※弊社オウンドメディア「TEGAKARI」に飛びます